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Abstract——There is growing evidence that cardio-
vascular disease is associated with progressive
changes in the production of free radicals and radical-
derived reactive species. These intermediates react
with all major cellular constituents and may serve

several physiological and pathophysiological func-
tions. The nitration of protein tyrosine residues has
been used as a footprint for in vivo production of rad-
ical and nonradical reactive species. Tyrosine nitra-
tion may alter protein function and metabolism and
therefore, provides for further dysfunctional changes.
This review focuses on an appearance of tyrosine ni-
trated proteins in cardiovascular tissues under differ-
ent settings of cardiovascular disease. Sources of re-
active species, putative mechanisms of protein
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nitration in vivo, as well as protein nitration under
normal physiological conditions, are also described.
The goal of this review is to attract more attention to
identification of specific proteins, which undergo ty-
rosine nitration and to study a correlation between
their altered function and pathology. Understanding

how protein nitration affects disease progression may
offer a unique option for design of antioxidant therapy
for the treatment of cardiovascular complications. At
the same time, protein nitration can be a biological
marker of efficiency of antioxidant therapy.

I. Introduction

Protein tyrosine nitration is a well established post-
translational modification occurring in a number of dis-
eases (Greenacre and Ischiropoulos, 2001). Tyrosine ni-
tration may affect protein structure and function. A gain
of function, as well as no effect on function have been
reported for some nitrated proteins (Gole et al., 2000;
Balafanova et al., 2002). However, the inhibition of func-
tion is a more common consequence of protein nitration
(Ischiropoulos, 1998; Greenacre and Ischiropoulos,
2001). It has also been shown that nitration of a tyrosine
residue may prevent the subsequent phosphorylation of
that residue (Gow et al., 1996; Kong et al., 1996). Alter-
natively, nitration of tyrosine residues may simulate
phosphorylation (MacMillan-Crow et al., 2000; Mallozzi
et al., 2001) and results in the constitutively active pro-
teins. Furthermore, tyrosine nitration may change the
rate of proteolytic degradation of nitrated proteins and
favor either its faster clearance or the accumulation of
nitrated proteins in cells. Cumulatively, this suggests
that protein nitration may be involved in a variety of
functions, possibly including disease initiation and pro-
gression.

Many recent studies in cardiovascular research have
demonstrated that there is an accumulation of nitrated
proteins in different settings of cardiovascular disease.
In this review, the following topics will be outlined: i)
sources and mechanisms of protein nitration in vivo, ii)
protein nitration in the cardiovascular system under
physiological and pathological conditions, and iii) ther-
apeutic implication of protein nitration.

II. Oxidative Pathways in Cardiovascular
Disease

A. Reactive Nitrogen and Oxygen Species

Nitric oxide (�NO) and superoxide (O2
.) are probably

the most relevant free radicals in biology. They are
readily converted by enzymes or nonenzymic chemical
reactions into reactive nonradical species, which can in
turn give rise to new radicals. Radical and nonradical
reactive nitrogen species (RNS1) include �NO, nitrogen
dioxide (�NO2), nitrous acid (HNO2), nitrosyl cation
(NO�), nitrosyl anion (NO�), dinitrogen tetroxide
(N2O4), dinitrogen trioxide (N2O3), peroxynitrite
(ONOO�), peroxynitrous acid (ONOOH), alkyl peroxyni-

trites (ROONO), nitronium cation (NO2
�) and nitryl chlo-

ride (NO2Cl). Radical and nonradical reactive oxygen
species (ROS) include O2

., hydroxyl radical (HO�), per-
oxyl radical (RO2

� ), alkoxyl radical (RO�), hydroperoxyl
radical (HO2

� ), hydrogen peroxide (H2O2), hypochlorous
acid (HOCl), ozone (O3), and singlet oxygen (1O2). Path-
ways of RNS and ROS production and clearance are
overlapped and cross-regulate each other. Protein nitra-
tion is caused by a different combination of RNS and
ROS, and we will use a term RNS/ROS throughout the
whole review to underline the involvement both of them
in general oxidative mechanisms and more specifically,
in the nitration of the tyrosine residues within proteins.

There is emerging evidence that increased RNS/ROS
production make a significant contribution to the pro-
gression of cardiovascular disease (Patel et al., 2000b;
Cuzzocrea et al., 2001; Wattanapitayakul and Bauer,
2001; Droge, 2002), but the actual sources of these reac-
tive species and mechanisms involved may not be iden-
tical in different settings.

B. Sources of �NO
�NO is produced from L-arginine by the enzyme nitric-

oxide synthase (NOS). There are three isoforms of NOS:
neuronal NOS (nNOS or NOS-I) originally identified in
brain, inducible NOS (iNOS or NOS-II) originally iden-
tified in macrophages, and endothelial NOS (eNOS or
NOS-III) originally identified in endothelial cells. Con-
stitutive nNOS and eNOS require calcium and calmod-
ulin as cofactors and generate low amounts of �NO. Con-
stitutively expressed mitochondrial NOS was recently
reported (Ghafourifar et al., 2001). Its activity is also
regulated by calcium. The iNOS that is expressed in
macrophages, endothelial cells, fibroblasts, vascular
smooth muscle cells and cardiac myocytes in response to
inflammatory cytokines, does not require calcium and
calmodulin as cofactors. Furthermore, it generates sub-
stantially larger amounts of �NO for long periods of time
(Moncada et al., 1991; Nathan, 1992; Cannon et al.,
1998; Zweier et al., 2001). The expression of iNOS is
regulated both at the level of transcription and at the
level of iNOS mRNA stability. Catalytic activity of iNOS
is regulated by the availability of the substrate, L-argi-
nine, and of the cofactors, NADPH and tetrahydrobiop-
terin. Induction of iNOS expression is complemented by
co-induction of cationic amino acid transporter proteins
(increase the intracellular L-arginine level) and GTP
cyclohydrolase (key enzyme of tetrahydrobiopterin syn-
thesis).

1 RNS, reactive nitrogen species; ROS, reactive oxygen species;
NOS, nitric-oxide synthase; nNOS, neuronal NOS; iNOS, inducible
NOS; eNOS, endothelial NOS; SOD, superoxide dismutase.
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Increased �NO production via induction of iNOS has
been suggested as a major mechanism by which cyto-
kines mediate cardiac contractile dysfunction and devel-
opment of cardiovascular disease. Indeed, iNOS mRNA
and iNOS protein expression were demonstrated in
many different settings of cardiovascular disease
(Schulz et al., 1995; Wildhirt et al., 1995; Cannon et al.,
1998; Sawyer and Colucci, 1998; Zweier et al., 2001).

C. Sources of O2
.

The major sources of intracellular O2
. are uncoupling

of mitochondrial electron transport and cytosolic oxi-
dases, such as NADH/NADPH oxidase and xanthine
oxidase. NOS may also generate O2

. under specific con-
ditions.

The uncoupling of mitochondrial electron transport is
a classical mechanism of oxidant production with the
developing consensus that O2

. generation is controlled by
the level of reduction of the respiratory chain (Turrens,
1997). Under hypoxic or ischemic conditions, the lack of
oxygen supply disrupts the mitochondrial electron
transport chain, resulting in many adverse events (Le-
masters et al., 1997). Reoxygenation or reperfusion
causes a massive production of ROS due to the resump-
tion of oxygen supply to mitochondrial respiration (Les-
nefsky et al., 1997). In addition to being a major source
of ROS, mitochondria are also a target for their damag-
ing effects. The phenomenon is that oxidative stress can
lead to dysfunctional mitochondria, and dysfunctional
mitochondria may self-amplify damage by generating
further free radicals (Zorov et al., 2000).

Nonmitochondrial sources of O2
. are also critical in

cardiovascular disease (Wattanapitayakul and Bauer,
2001). The neutrophil NADPH oxidase may generate
millimolar quantities of O2

. and is involved in nonspecific
host defense during infection. This complex protein is
both constitutive and induced by pro-inflammatory
stimuli. Different enzymatic forms of the NADPH oxi-
dase resemble those of NOS and display diversity in
regulation and the amount of free radical formed
(Levonen et al., 2001). Vascular NADH/NADPH oxidase
is activated by angiotensin II and significantly contrib-
utes to O2

. production in the pathogenesis of angiotensin
II-induced cardiovascular disease (Griendling et al.,
1994; Wattanapitayakul et al., 2000).

Xanthine oxidase, a metalloflavoprotein, is involved in
the purine degradation pathway and generates O2

. as a
byproduct of its catalytic activity. Xanthine oxidase is an
important source of O2

. and has been implemented in the
pathogenesis of injury following post-ischemic reperfu-
sion. Its activity could be triggered by increased forma-
tion of the substrates, xanthine and hypoxanthine, due
to ATP degradation during ischemia (Xia and Zweier,
1995). Chronic hypoxia or increased inflammatory cyto-
kines can enhance xanthine oxidase activity and also
cause its release into the plasma. It was shown, that the

elevated levels of circulating xanthine oxidase partici-
pate in endothelial dysfunction (Houston et al., 1999).

nNOS exhibits oxidase activity in the case of insuffi-
cient substrate or tetrahydrobiopterin supply (Heinzel
et al., 1992; Pou et al., 1992). Cofactor-deficient nNOS
cannot catalyze the five-electron oxidation of L-arginine
to �NO, but it can receive electrons from NADPH and
donate them for one electron reduction of oxygen to O2

..
Similar data were obtained with the inducible (Xia and
Zweier, 1997) and endothelial (Vasquez-Vivar et al.,
1998) NOS isoforms, demonstrating that enzymatic gen-
eration of O2

. is a common feature of NOS. Implications
of O2

. generation from NOS in cardiovascular disease
were reviewed (Vasquez-Vivar et al., 1999). However,
recent studies (Xu, 2000a,b) suggested that NOS coen-
zyme and cofactors might cause O2

. generation in the
NOS-independent manner. These findings raise some
question whether or not NOS actually does catalyze O2

.

formation.

D. Consequences of Oxidative Events

The net concentrations of �NO at the tissue level may
predict its protective or toxic effects. Many lines of evi-
dence suggest that modulation of �NO concentration will
determine whether or not the roles played by RNS/ROS
will be protective or detrimental to the cardiovascular
system (Cannon et al., 1998; Ronson et al., 1999; Mc-
Carty, 2000; Patel et al., 2000a,b; Wattanapitayakul and
Bauer, 2001; Zweier et al., 2001). Availability of �NO is
determined by the amounts produced and by the local
chemical environment, which promotes either protection
of �NO by antioxidants or depletion of �NO by O2

. with
RNS/ROS generation. Since protein tyrosine nitration is
mainly detrimental to protein function, the major focus
of this review will be on the adverse consequences of
RNS/ROS generation.

Many studies conducted have illustrated that in-
creased RNS/ROS production may be a unifying mech-
anism in cardiovascular disease progression. Adverse
changes associated with RNS/ROS production have been
found, essentially, at all levels of the cardiovascular
system: including gene expression, signal transduction,
energy metabolism, antioxidant defense and cell death
(reviewed by Wattanapitayakul and Bauer, 2001). Mo-
lecular mechanisms of these oxidative events include
post-translational modifications of proteins. Protein ni-
tration is a prominent one, which attracts much atten-
tion (Ischiropoulos, 1998; Nakazawa et al., 2000;
Greenacre and Ischiropoulos, 2001). However, it is not
clear whether protein nitration and subsequent alter-
ation of protein function contributes to progression of
cardiovascular disease or simply reflects the presence of
complications caused by oxidative stress.

III. Mechanisms of Protein Nitration in Vivo

Most of our knowledge regarding protein nitration is
derived from in vitro experiments with albumin or free
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tyrosine. The physiological relevance of these findings
remains to be defined. Presumably, the nitration path-
ways in vivo are not mutually exclusive and may operate
simultaneously. Given the complexity of biological sys-
tems, it is likely that the nitrating species responsible
for protein nitration must be evaluated for every model
of disease separately. Meanwhile, the mechanism(s) of
in vivo nitration remains an area of active investigation
and controversy (Beckman, 1996; Eiserich et al., 1996;
Goldstein et al., 2000; Pfeiffer et al., 2000, 2001a,b;
Reiter et al., 2000; Sawa et al., 2000; Zhang et al.,
2001a). The most likely in vivo mechanisms for protein
nitration are summarized in Fig. 1 and described below.

A. ONOO�-Dependent Tyrosine Nitration

Formation of ONOO� by the diffusion-limited recom-
bination of �NO with O2

. is a reaction of considerable
biological interest (Beckman et al., 1990; Radi et al.,
2001). A second order rate constant of this reaction was
independently determined as 4.3, 6.7, and 1.9 � 109 M�1

s�1 (Huie and Padmaja, 1993; Goldstein and Czapski,
1995; Kissner et al., 1997). It has been suggested that
ONOO� can also be formed by the reaction of nitroxyl
anion (NO�) with O2 (Hogg et al., 1996). The latter
reaction proceeds at a slower rate (5.7 � 107 M�1 s�1)
than that of �NO with O2

.. Perhaps, this reaction is phys-
iologically relevant in some specific conditions since
NO� production from �NO could be catalyzed by cyto-
chrome c (Sharpe and Cooper, 1998), and concentrations
of O2 in vivo are many orders of magnitude higher than
concentrations of O2

..
ONOO� is a strong oxidant capable of modifying most

biological molecules and compounds, including such
amino acids as tyrosine, tryptophan, cysteine, and me-
thionine (Radi et al., 1991; Alvarez et al., 1996, 1999).
The detailed chemistry of the ONOO�-catalyzed reac-
tions is beyond the scope of this review but can be found
in other sources (Beckman and Koppenol, 1996; Koppe-
nol, 1998; Squadrito and Pryor, 1998; Ducrocq et al.,
1999; Radi et al., 2001). Nitration of free and protein-
bound tyrosine to yield nitrotyrosine is a well estab-
lished in vitro reaction of ONOO�. However, there has

been a debate over the physiological significance of these
findings (Goldstein et al., 2000; Pfeiffer et al., 2000,
2001a,b). The major concern is that ONOO� formation
and ONOO�-catalyzed tyrosine nitration both require
specific conditions that rarely occur in complex biologi-
cal systems. For example, a requirement of precisely
balanced rates of �NO and O2

. production for ONOO�

formation (Pfeiffer and Mayer, 1998; Goldstein et al.,
2000) or high concentrations of potentially ONOO�-spe-
cific scavengers in biological samples (Mayer et al.,
1998). However, another study did not confirm the strict
requirement of equimolar fluxes of �NO and O2

. for oxi-
dative pathways involving a direct reaction with
ONOO� (Jourd’heuil et al., 2001). In addition, direct
reactions of ONOO� with CO2, transition metals, and
superoxide dismutase (SOD) have been found to catalyze
the nitration of tyrosine residues (Beckman et al., 1992;
Ischiropoulos et al., 1992; Lymar et al., 1996). These
reactions increase the rate of tyrosine nitration and may
explain the ability of ONOO� to nitrate proteins in vivo
despite the presence of high concentrations of com-
pounds, such as reduced glutathione, cysteine, or ascor-
bate, which act to inhibit radical formation and there-
fore prevent nitration.

A few more considerations could be helpful in discuss-
ing a role of ONOO� in in vivo protein nitration. They
include 1) tyrosine nitration in hydrophobic conditions
and 2) tyrosine nitration in the absence of heme perox-
idase.

1. Tyrosine Nitration in Hydrophobic Conditions. In
terms of the chemistry of tyrosine nitration, it seems
likely that the local environment of the targeted tyrosine
residue may play a key role in determining the final
outcome of the reaction. Although much is known about
the chemistry of tyrosine nitration in aqueous solution,
detailed investigations of the chemistry of tyrosine ni-
tration in the hydrophobic interior of membranes or
hydrophobic regions of proteins have only recently be-
gun (Goss et al., 1999; Zhang et al., 2001a). �NO and
other oxides of nitrogen are hydrophobic gases. They
have higher solubility in hydrophobic solvents. This sug-
gests that the concentration of RNS may be higher in a

FIG 1. Protein nitration in vivo. ONOO�- and heme peroxidase-dependent protein nitrations are the most likely mechanisms. Other mechanisms,
whose physiological relevance remains to be understood, include protein nitration catalyzed by some hemoproteins with pseudoperoxidase activity.
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hydrophobic milieu. Even if the intrinsic rate constant of
the RNS-mediated reaction within hydrophobic phase is
the same as in the aqueous cytosol, the reaction is ac-
celerated overall because of the increased reactant con-
centration and the lack of the hydrolysis reaction (Liu et
al., 1998b). The ONOO� can freely pass through lipid
membranes, making ONOO�-mediated reactions in hy-
drophobic environment, such as cell membranes, or-
ganelles, lipoproteins, and sites buried in the protein
tertiary structure, also of extreme relevance (Marla et
al., 1997; Denicola et al., 1998; Boulos et al., 2000;
Khairutdinov et al., 2000; Zhang et al., 2001a).

Another interesting observation is the stable tyrosyl
free radical found in ribonucleotide reductase from dif-
ferent prokaryotes. This tyrosyl radical is essential for
enzyme catalysis and located inside a rigid hydrophobic
pocket (Ormo et al., 1995; Liu et al., 1998a). The remark-
able stability of this radical (a half-life of several days at
25°C) is explained by the unique hydrophobic environ-
ment, which stabilizes the tyrosyl radical. The formation
of the tyrosyl radical was suggested as a key element of
tyrosine nitration. The possibility of stabilizing tyrosyl
radical in the hydrophobic environment could be one
more difference, which distinguishes tyrosine nitration
in the hydrophobic environment from tyrosine nitration
in the hydrophilic environment.

However, the argument that tyrosine nitration occurs
in a hydrophobic environment is weakened by the fact
that tyrosine residues mainly don’t intend to be buried
away from solvent. Although, there is not a universal
method for measuring the relative affinities of amino
acid residues for hydrophobic phases, the consensus of
different approaches put the tyrosine residue in the mid-
dle of the hydrophobicity scale (Eisenberg, 1984). This
limits the probability of the tyrosine residue appearing
in the hydrophobic environment.

2. Tyrosine Nitration in the Absence of Heme Peroxi-
dase. Both major mechanisms of protein tyrosine ni-
tration, ONOO�- and heme peroxidase-dependent, prob-
ably overlap in vivo. However, specific conditions in vivo
can favor one over the other. For example, it seems likely
that mitochondria have no heme peroxidases. At the
same time, the mitochondrial respiratory chain is a ma-
jor source of O2

.. Considering the recent evidences for
mitochondrial NOS (Giulivi et al., 1998; Ghafourifar et
al., 2001), the intramitochondrial formation of ONOO�

is becoming apparent. Indeed, evidence for intramito-
chondrial ONOO� formation was presented in recent
publications (Ghafourifar et al., 1999; Valdez et al.,
2000). Tyrosine nitration of mitochondrial proteins is
also recognized (MacMillan-Crow et al., 1996, 2001;
Park et al., 1999; Aulak et al., 2001; Riobo et al., 2001;
Turko et al., 2001; Yamamoto et al., 2002).

Protein nitration was also observed under pathologi-
cal conditions that were not associated with immune cell
infiltration. For example, doxorubicin treatment caused
cardiac accumulation of tyrosine nitrated proteins in

mice (Weinstein et al., 2000). At the same time, there
was no histological evidence of neutrophil infiltration
into cardiac tissue. These two observations together fa-
vor ONOO� as a source of tyrosine nitrated proteins in
the doxorubicin-treated mice.

B. Heme Peroxidase-Dependent Tyrosine Nitration

Besides ONOO�, it has become recognized that other
reactions, such as nitrite-dependent heme peroxidase
reactions also may give a rise to protein tyrosine nitra-
tion in vivo (Van der Vliet et al., 1997; Eiserich et al.,
1998; Van Dalen et al., 2000; Pfeiffer et al., 2001b;
Brennan et al., 2002). It has been shown that heme
peroxidase enzymes (myeloperoxidases, eosinophil per-
oxidases, horseradish peroxidases) in the presence of
nitrite and H2O2 can nitrate different proteins in heart
homogenates (Sampson et al., 1998) or different pure
proteins (Van der Vliet et al., 1997; Wu et al., 1999). This
occurs through simultaneous oxidation of nitrite and
tyrosine to nitrogen dioxide radical and tyrosyl radical,
respectively. The subsequent reaction of these two rad-
icals yields nitrotyrosine. Tyrosine nitration under these
conditions was exclusively inhibited by catalase and
azide (an myeloperoxidase inhibitor) but not by SOD.
This suggests that the mechanism of tyrosine nitration
is ONOO�-independent.

Protein tyrosine nitration could be achieved by the
direct oxidation of nitrite by H2O2, but this reaction
requires nonphysiological concentrations of H2O2. Alter-
natively, nitrate can be oxidized by myeloperoxidase-
derived hypochlorous acid to form nitryl chloride, which
is capable of nitrating protein tyrosine residues (Ei-
serich et al., 1996; Panasenko et al., 1997). However,
other studies (Sampson et al., 1998; Ohshima et al.,
1999) did not confirm physiological relevance of this
reaction.

Nitrate balance studies consistently conclude that a
greater amount of nitrite is excreted than can be ac-
counted for by ingestion. Therefore, there are endoge-
nous sources of nitrite production, namely �NO and the
products of �NO metabolism (Oldreive and Rice-Evans,
2001). For example, in the vascular system, �NO is rap-
idly oxidized to nitrate by reaction with oxyhemoglobin
or methemoglobin (Radi, 1996). The reaction of ONOO�

with a wide variety of biomolecules results in the pro-
duction of nitrite (Pryor and Squadrito, 1995). Since
O2

. is a precursor of H2O2, it appears that both major
nitrating reactions in vivo share the same sources of
substrates. However, their relative contribution to nitro-
tyrosine formation may vary depending on inflamma-
tory models (Brennan et al., 2002).

The discrimination between these two mechanisms of
tyrosine nitration could be mainly associated with infil-
tration of activated phagocytes, which contain high lev-
els of heme peroxidases. Activated phagocytes, such as
eosinophils and neutrophils or monocytes, play a central
role in host defense mechanisms. However, the reactive
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intermediates formed by these cells also can harm nor-
mal tissue and contribute to inflammatory injury. My-
eloperoxidase and eosinophil peroxidase are the most
abundant proteins in the activated phagocytes, and the
state of phagocytic activation has been described as one
of the early events in cardiovascular disease (Zahler et
al., 1999; Frangogiannis et al., 2002). The infiltration of
activated phagocytes during chronic settings of cardio-
vascular disease is not well established (Wattanapitay-
akul and Bauer, 2001). It is most likely that chronic
settings favor the ONOO�-dependent mechanism of pro-
tein nitration over the heme peroxidase-dependent.

C. Other Putative Mechanisms

Other mechanisms relevant to in vivo conditions have
been described (McBride et al., 1999; Zhang et al., 2000;
Grzelak et al., 2001; Kilinc et al., 2001; Ogino et al.,
2001). These mechanisms of protein nitration vary
slightly from those described above and are based on
pseudoperoxidase activity of hemoproteins, such as cop-
per/zinc superoxide dismutase (Cu/Zn-SOD), catalase,
hemoglobin, and myoglobin. Perhaps, these reactions
reflect the putative toxicity of hemoproteins as the po-
tent oxidants capable of generating RNS/ROS and pro-
moting oxidative damage.

Despite the obvious protective role of different SOD,
the ability of SOD to produce strong oxidants can be
damaging to cells. Initially, it was believed that H2O2
was metabolized by Cu/Zn-SOD to form hydroxyl radi-
cals, which serve as a source of oxidative damage (Yim et
al., 1993). Recent studies showed that tyrosine nitration
could play a part in this damage. In the presence of
bicarbonate (HCO3

�), Cu/Zn-SOD may act as a peroxi-
dase in the physiological pH range (Sankarapandi and
Zweier, 1999). HCO3

� is abundantly present in biological
systems and can dramatically alter the nitrating ability
of RNS/ROS (Lymar et al., 1996). It was proposed that in
the presence of nitrite/H2O2, HCO3

� increases the perox-
idase activity of Cu/Zn-SOD (Zhang et al., 2000). This
causes generation of nitrogen dioxide and carbonate an-
ion radicals with subsequent oxidation and nitration of
tyrosine residues. These reactions may generate multi-
ple tyrosine derivatives, including nitrotyrosine. An-
other study showed that Cu/Zn-SOD or Mn-SOD in the
presence of �NO/H2O2 caused nitration of phenol and
oxidation of dihydrorhodamine-1,2,3 to rhodamine-1,2,3
(McBride et al., 1999). The latter was interpreted as
production of ONOO�. Collectively, these studies sug-
gest an alternative mechanism, which may have in vivo
implications to protein nitration.

Catalase is a heme peroxidase ubiquitously expressed
throughout mammalian tissues that is involved in pro-
tecting cells from oxidative stress. Catalase can catalyze
in vitro nitration of free tyrosine or tyrosine residues of
bovine serum albumin in the presence of azide/H2O2
(Ogino et al., 2001). Oxidation of azide by the catalase/
H2O2 system can generate azidyl radicals. Subsequent

reaction of the azidyl radicals with oxygen generates
�NO. The involvement of these products in the catalyze-
dependent tyrosine nitration as well as its physiological
relevance remains to be understood.

Hemoglobin, the main component of the erythrocyte,
is a ONOO� scavenger of physiological relevance (Mi-
netti et al., 2000). However, hemoglobin exhibits differ-
ent enzymatic activities (Giardina et al., 1995), includ-
ing the pseudoperoxidase activity (Bao and Williamson,
1997; Alayash et al., 2001). Incubation of human hemo-
globin with nitrite/H2O2 was found to induce self-nitra-
tion and nitration of bovine serum albumin (Grzelak et
al., 2001). The hemoglobin-catalyzed nitration is not
enhanced by HCO3

� and is inhibited by cyanide. Presum-
ably, hemoglobin may behave like peroxidase and per-
form tyrosine nitration by the mechanism analogous to
that of peroxidase. This catalytic property of hemoglobin
seems to be very important for protein nitration in cir-
culating erythrocytes. However, there is controversy
concerning the appearance of tyrosine nitrated proteins
there, since a recent report showed no accumulation of
nitrated proteins in the circulating erythrocytes (Kiku-
gawa et al., 2000).

Another hemoprotein capable of catalyzing nitroty-
rosine formation is the myoglobin (Kilinc et al., 2001).
This reaction is nitrite/H2O2-dependent with a pH opti-
mum of approximately 6.0. Most likely, it may occur
under acidic pH and low oxygen tension produced during
myocardial ischemia.

D. Selectivity of Protein Nitration

Apart from the mechanism of tyrosine nitration, the
selectivity of protein nitration is also a subject of inter-
est. It has been shown that the process of tyrosine ni-
tration is residue-, protein-, and tissue-specific: not all
tyrosine residues of a protein are nitrated and not all
proteins are targets for nitration (Ischiropoulos, 1998;
Souza et al., 1999). Certain proteins can be preferen-
tially targeted for nitration. This selectivity may depend
not only on the composition and structure of a given
target, but also on its intracellular concentration, local-
ization, and interaction with other molecules.

IV. Protein Nitration under Physiological
Conditions

A. Oxidative Modification of Proteins and Redox
Regulation

RNS/ROS exist in biological cells and tissues at low
concentrations under normal physiological conditions
and are involved in the redox regulation of many phys-
iological functions (Droge, 2002). The balance between
their rates of production and their rates of clearance
determines their concentrations by various antioxidant
compounds and enzymes. Redox regulation requires
that this balance be changed, either by an increase in
RNS/ROS production or a decrease in the activity of the
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antioxidant system. There are several mechanisms for
reestablishing the original redox state after such a tem-
porary imbalance. Elevated RNS/ROS concentrations
typically induce the expression of genes whose products
exhibit antioxidative activity. Moreover, the rate of
RNS/ROS synthesis is regulated by different feedback
mechanisms, for example by direct inhibition of NOS by
�NO (Abu-Soud et al., 1995). The expression of iNOS is
also regulated at the transcriptional and post-transcrip-
tional level by signaling pathways that involve redox-
responsive agents such as the transcriptional factor nu-
clear factor-�B or mitogen-activated protein kinases
(MacMicking et al., 1997).

Redox regulation under physiological conditions is of-
ten associated with oxidative derivatization of proteins.
For example, certain signaling cascades involving pro-
tein tyrosine kinases can be enhanced by oxidative in-
hibition of protein tyrosine phosphatases (Hardwick and
Sefton, 1995). All protein tyrosine phosphatases share a
common sequence motif with a catalytically essential
cysteine residue in the active center that can be inacti-
vated by H2O2 (Denu and Tanner, 1998). H2O2 can also
enhance the stimulation of the insulin receptor tyrosine
kinase activity by insulin (Schmid et al., 1999). This
redox effect is probably mediated by the oxidative deri-
vatization of any of four cysteine residues in the tyrosine
kinase domain of this membrane receptor.

B. Protein Nitration

Modification of cysteine residues described above rep-
resents a common mechanism of redox regulation. Ni-
tration of tyrosine residues in proteins may also be im-
portant in redox regulation under physiological
conditions. Nitration of tyrosine residues in proteins
induces the change of tyrosine into a negatively charged
hydrophilic nitrotyrosine moiety and causes a marked
shift of the local pKa of the hydroxyl group from 10.07 in
tyrosine to 7.50 in nitrotyrosine. This is expected to
change the function of a protein. A gain of function as
well as no effect on function were reported for tyrosine
nitrated proteins (Gole et al., 2000; Balafanova et al.,
2002); however, the inhibition of function is a much
more common consequence of protein tyrosine nitration
(Ischiropoulos, 1998; Greenacre and Ischiropoulos,
2001). Nitration of a tyrosine residue may also prevent
further phosphorylation of that residue (Gow et al.,
1996; Kong et al., 1996). Alternatively, nitration of ty-
rosine residues may simulate phosphorylation (MacMil-
lan-Crow et al., 2000; Mallozzi et al., 2001) and results
in the constitutively active proteins. There is also evi-
dence that tyrosine nitration may mimic regulatory cy-
clic adenylylation of a specific tyrosine residue (Berlett
et al., 1996, 1998).

Protein tyrosine nitration has been detected in nu-
merous tissues under apparently normal physiological
conditions (Greenacre and Ischiropoulos, 2001). In the
cardiovascular system, basal protein nitration was

found in all major types of cells, such as myocytes, en-
dothelial cells, fibroblasts, and vascular smooth muscle
cells (Davidge et al., 1998; Frustaci et al., 2000; Kajstura
et al., 2001). Basal protein nitration was also found in
plasma (Khan et al., 1998; Marfella et al., 2001). Some of
these nitrated proteins were identified. Myofibrillar cre-
atine kinase (Mihm et al., 2001a), prostacyclin synthase
in coronary arteries (Zou et al., 1999), and heart succi-
nyl-CoA:3-oxoacid CoA-transferase (Turko et al., 2001)
were demonstrated to be nitrated under normal physio-
logical conditions. Several structural proteins, such as
myosin heavy chain, �-actinin, and desmin were also
found nitrated in control atrial myocytes (Mihm et al.,
2001b). These data are consistent with the emerging
perspective that low levels of tyrosine nitration may be a
physiological regulator of a signaling pathway.

C. Feedback Regulation

It is widely accepted that nitration of tyrosine resi-
dues in vivo is derived from enzymatically produced
�NO. This implies that tyrosine nitration is a critical
component of �NO biochemistry and could function as a
negative feedback modulator of �NO production. The re-
cent study on the murine lung epithelial cells (Robinson
et al., 2001) demonstrated that ONOO� treatment
causes accumulation of nitrotyrosine in iNOS and inhib-
its �NO production. ONOO�-dependent inhibition of
iNOS may be a mechanism of attenuating iNOS activity
at inflammatory sites in vivo. ONOO� can also inhibit
the activity of xanthine oxidase and O2

. production (Lee
et al., 2000). Down-regulation of xanthine oxidase activ-
ity may serve as the feedback to limit further ONOO�

formation. Presumably, many other proteins associated
with the RNS/ROS functions can be regulated by ty-
rosine nitration.

D. Rationale for “Denitrase”

Protein nitration occurs under normal physiological
conditions and affects the function of many proteins. To
be a regulatory mechanism, protein nitration requires
reversibility. Indeed, putative denitrase activity was
demonstrated in several publications (Gow et al., 1996;
Kamisaki et al., 1998; Kuo et al., 1999, 2002). This
activity was monitored by the decreased intensity of
nitrotyrosine immunoreactive bands in Western blots
and increased nitrate levels in reaction mixtures. How-
ever, neither an enzyme catalyzing this reaction nor a
product of this reaction was identified. The reversibility
of protein tyrosine nitration remains to be elucidated.
Meanwhile, the biological rationale for this type of en-
zymatic activity is summarized below.

In the presence of NAD(P)H and a corresponding re-
ductase the nitrotyrosine could be enzymatically re-
duced to the nitro anion radical (Krainev et al., 1998).
The nitro anion radical is then oxidized by molecular
oxygen to yield O2

. and regenerate nitrotyrosine. Thus,
once formed in vivo, nitrotyrosine may cause depletion of
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NAD(P)H and promote repetitive redox cycling with ex-
cessive O2

. generation.
Instead of repair, the proteolytic degradation of ty-

rosine nitrated proteins may discharge nitrated tyrosine
residues. Indeed, the accelerated degradation of mildly
oxidized proteins is a normal cellular function. However,
extensively oxidized proteins are poor substrates for pro-
teases and may accumulate in cells (Davies, 2001). Fur-
thermore, nitration of tyrosine can change chymotryp-
sin-like proteolytic selectivity. For example,
chymotrypsin was found to be capable of cleavage next
to nitrated tyrosine residues but at a considerably
slower rate than next to unmodified tyrosine residues
(Souza et al., 2000).

Proteolytic degradation of tyrosine nitrated proteins
actually results in the appearance of free nitrotyrosine.
Free nitrotyrosine in vivo could also be derived from
direct nitration of free tyrosine. The levels of free nitro-
tyrosine vary in different tissues, (Greenacre and Ischi-
ropoulos, 2001) but were detected everywhere. It was
demonstrated that systematic administration of free ni-
trotyrosine markedly attenuates the subsequent hemo-
dynamic responses to �1- and �-adrenoceptor agonists in
anesthetized rats (Kooy and Lewis, 1996). Inhibition of
the hemodynamic action of angiotensin II by free nitro-
tyrosine may be involved in the pathogenesis of inflam-
matory conditions, such as atherosclerosis, ischemia-
reperfusion, and sepsis, where tyrosine nitration is
favored (Kooy and Lewis, 1996). It was also shown that
physiological concentrations of free nitrotyrosine can in-
duce vascular and endothelial dysfunction of rat thoracic
aorta segments in vitro (Mihm et al., 2000).

Review of possible adverse functions of protein-bound
or free nitrotyrosine assumes an apparent need for re-
pair of this modification and warrants further research
on putative denitrases.

V. Protein Nitration in Cardiovascular Disease

A. Cardiovascular Inflammation

The induction of iNOS in response to pro-inflamma-
tory cytokines or endotoxin (bacterial lipopolysaccha-
ride) has been implicated in cardiovascular dysfunction.
The production of large amounts of �NO during inflam-
matory challenge leads to the formation of RNS/ROS
capable of oxidizing many biological molecules including
protein tyrosine nitration. Human autopsy specimens
obtained from patients with a diagnosis of sepsis dem-
onstrated intense nitrotyrosine immunoreactivity in the
endocardium, myocardium, and coronary vascular endo-
thelium and smooth muscle (Kooy et al., 1997). Follow-
ing endotoxin or interleukin-1� treatment, tyrosine ni-
trated proteins were found in myocardium (Oyama et
al., 1998; Cheng et al., 1999), aorta (Szabo et al., 1995),
plasma (Kamisaki et al., 1997), and cultured cardiomy-
ocytes (Combes et al., 2001). Immunohistochemical
studies showed a co-induction of iNOS, cyclooxygenase

and protein tyrosine nitration in endocardial endothe-
lium and coronary arteriole endothelium in rabbits after
endotoxin administration (Mebazaa et al., 2001). The
treatment with NOS inhibitors prevented tyrosine ni-
tration. Cytokine-induced myocardial dysfunction was
also associated with overproduction of O2

. (Cheng et al.,
1999). These data indicate that changed equilibrium
between �NO and O2

. is involved in the pathogenesis of
the cardiovascular inflammation. Furthermore, the time
course studies of several pro- and anti-oxidant variables
throughout endotoxemia indicate that endotoxin-in-
duced myocardial dysfunction is caused by the sum of
complex interactions between various oxygen- and nitro-
gen-derived radicals (Iqbal et al., 2002). Altered protein
functions caused by tyrosine nitration could be a portion
of this pathogenesis.

B. Autoimmune Myocarditis

Acute viral myocarditis is a potentially lethal disease
in humans. Autoimmune myocarditis, an experimental
model for human postviral heart disease, could be in-
duced in laboratory animals by injection of cardiac my-
osin. It was shown that autoimmune heart disease is
accompanied by iNOS expression and accumulation of
tyrosine nitrated proteins in inflammatory macrophages
as well as in cardiomyocytes (Bachmaier et al., 1997;
Ishiyama et al., 1997; Shin et al., 1998). Focal myocar-
ditis was sufficient to induce nitrotyrosine formation
throughout the whole heart muscle (Bachmaier et al.,
1997). Aminoguanidine, the iNOS inhibitor, prevented
myocardial destruction, inflammatory cell infiltration
and decreased immunostaining for tyrosine nitrated
proteins.

C. Heart Failure

The failing heart displays a disruption of fundamental
regulatory processes. Among them is a balance between
generation of �NO and ROS (Saavedra et al., 2002). Al-
tered cross talk between �NO and oxidative stress may
cause protein nitration. Indeed, extensive cardiac pro-
tein nitration was demonstrated in multiple settings of
cardiac failure (Ferdinandy et al., 2000; Cesselli et al.,
2001; Feng et al., 2001; Mihm et al., 2001a). iNOS is
expressed in the myocardium after myocardial infarc-
tion and in heart failure. Studies on the iNOS(�/�)
mutant and wild-type mice demonstrated that iNOS
expression after myocardial infarction causes myocar-
dial dysfunction and results in higher mortality in wild-
type compared with iNOS(�/�) mutant mice. At the
same time, myocardial infarction significantly increased
the levels of myocardial and plasma nitrotyrosine (Feng
et al., 2001). Accumulation of tyrosine nitrated proteins
was also coupled with apoptotic cell death in the paced
dog heart. Myocyte, endothelial cell, and fibroblast apo-
ptosis was detected before the impairment of cardiac
function became apparent. Cell death increased with the
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duration of pacing and followed progressively increased
nitrotyrosine formation (Cesselli et al., 2001).

Statins, hydroxymethylglutaryl coenzyme A reduc-
tase inhibitors, attenuate angiotensin II-induced cellu-
lar signaling. Cerivastatin improved left ventricular re-
modeling after myocardial infarction and decreased the
nitrotyrosine protein level in rats (Bauersachs et al.,
2001).

Not much is known about specific proteins, which
undergo nitration and which altered function may con-
tribute to myocardial dysfunction. Mihm et al. (2001a)
demonstrated that myofibrillar creatine kinase is highly
sensitive to nitration in cardiac failure in vivo. The myo-
fibrillar isoform of creatine kinase is an important con-
troller of myocyte contractility. The myocyte contraction
depends upon complex and tightly regulated high-en-
ergy phosphate production and utilization. The energet-
ics of myocyte contraction are severely altered in myo-
cardial dysfunction. Increased oxidative stress has been
implicated in the pathology of multiple cardiac disease
states. Nitration of critical tyrosine residues in the ac-
tive site of creatine kinase and impairment of its cata-
lytic activity could be a link between increased oxidative
stress and myocardial dysfunction (Mihm et al., 2001b,
2002).

D. Ischemia-Reperfusion Injury

Reperfusion of ischemic myocardium is the definitive
treatment to attenuate myocardial injury. Unfortu-
nately, reperfusion itself causes additional tissue dam-
age mediated by several factors including inflammatory
response and consequently altered production of RNS/
ROS (Wang and Zweier, 1996; Liu et al., 1997; Yasmin et
al., 1997; Zweier et al., 2001). RNS/ROS generation can
cause oxidative modifications of proteins. This could be a
critical factor in post-ischemic myocardial injury.

Although the molecular mechanisms of injury remain
to be elucidated, many studies showed that repetitive
episodes of ischemia-reperfusion caused an increased
formation of nitrotyrosine in cardiac tissue. Further-
more, various competitive inhibitors of the NOS enzyme
have been shown to reduce the level of cellular protein
nitration and to reduce reperfusion injury in various
settings (Wang and Zweier, 1996; Liu et al., 1997; Yas-
min et al., 1997; Mori et al., 1998; Hayashi et al., 2001;
Zhang et al., 2001b; Zweier et al., 2001; Baker et al.,
2002). Preconditioning of isolated rat hearts before sub-
sequent ischemia-reperfusion also reduced formation of
free nitrotyrosine measured in the perfusate (Csonka et
al., 2001). All these studies support a role of protein
tyrosine nitration in the genesis of post-ischemic myo-
cardial injury. However, little is known about specific
protein targets for nitration.

A recent publication (Zou and Bachschmid, 1999) im-
plicates prostacyclin synthase. Prostacyclin synthase,
an enzyme with antithrombotic, antiproliferative, and
dilatory functions in the normal vasculature, was found

to be nitrated and inactivated in isolated bovine coro-
nary arteries following hypoxia-reoxygenation. The ad-
ministration of NOS inhibitors or SOD prevented nitra-
tion and inactivation of enzyme and abolished coronary
vasospasm induced by hypoxia-reoxygenation (Zou and
Bachschmid, 1999). The current conclusion is that nitra-
tion and inactivation of prostacyclin synthase results in
accumulation of unmetabolized prostaglandin H2, which
causes the observed vasospasm.

E. Cardiac Allograft Rejection

Cardiac transplantation is an effective therapy for
end-stage heart failure. However, cardiac allograft re-
jection remains a problem and is the leading cause of
death in cardiac transplant recipients after the first
year. It is broadly accepted that the immunological and
inflammatory reactions in the myocardium are the ma-
jor component of the pathological changes observed dur-
ing cardiac allograft rejection, but the molecular mech-
anisms, which ultimately cause rejection, are not
completely understood. There is a large body of evidence
that the death of cardiac myocytes is the hallmark of
cardiac allograft rejection and that �NO produced by
macrophages infiltrating the myocardium or by the car-
diac myocyte itself is potentially cytotoxic to heart mus-
cle cells (Szabolcs et al., 1996; Cannon et al., 1998).

During cardiac allograft rejection, there is significant
release of cytokines as a part of the immune response to
foreign antigens present in the cells of transplanted
heart. Cytokines cause expression of iNOS, which gen-
erates large amounts of �NO for long periods of time.
iNOS mRNA, iNOS enzyme activity, and immunostain-
ing for iNOS protein were increased in macrophages,
endothelial cells, vascular smooth muscle cells, and car-
diac myocytes in rejected cardiac allografts (Szabolcs et
al., 1996, 1998; Sakurai et al., 1999; Akizuki et al., 2000;
Wildhirt et al., 2001). All these studies also demon-
strated the accumulation of tyrosine nitrated proteins,
suggesting that tyrosine nitration may play a role in
the rejection process. Experiments with iNOS inhibi-
tors, O2

. scavengers, and iNOS knockout mice have
proved an association of cardiac myocyte death with
iNOS expression and nitration of myocyte proteins (Sz-
abolcs et al., 1998, 2001; Sakurai et al., 1999; Akizuki et
al., 2000; Wildhirt et al., 2001).

F. Transplant Coronary Artery Disease

Transplant coronary artery disease is a major cause of
late mortality after cardiac transplantation in humans.
Studies on tissue sections from patients with transplant
coronary artery disease revealed iNOS expression in
neointimal macrophages and smooth muscle cells. Nor-
mal coronary arteries had no evidence of iNOS expres-
sion. Similar to the setting of acute and chronic cardiac
allograft rejection, iNOS expression in human arteries
with transplant coronary artery disease was associated
with extensive nitration of protein tyrosines (Ravalli et
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al., 1998). Studies on atherosclerotic lesions from pa-
tients with transplant coronary artery disease revealed
colocalization of two enzymes involved in the inflamma-
tory response, iNOS and cyclooxygenase-2. Protein ni-
trotyrosine was found in the same distribution as that of
iNOS and was colocalized with cyclooxygenase-2 in mac-
rophages (Baker et al., 1999). These findings indicate
that protein tyrosine nitration might be involved in the
process leading to the development of transplant coro-
nary artery disease.

G. Hypertension

Various experimental models of hypertension, includ-
ing genetic and induced by angiotensin II or by aortic
banding, have implied that this pathophysiological
state is associated with endothelial dysfunction, in-
creased O2

. production, and an apparent decrease in the
production of �NO. Molecular mechanisms involved in
the development of endothelial dysfunction as well as
the effect of hypertension on iNOS expression and activ-
ity remain to be fully elucidated. Analysis of O2

. produc-
tion, iNOS expression, and protein tyrosine nitration in
aortas from aortic-banded rats revealed that an en-
hanced O2

. production alone is not sufficient to produce
endothelial dysfunction. Substantial changes were ob-
served only when iNOS expression and O2

. production
were increased and were associated with the enhanced
protein tyrosine nitration (Bouloumie et al., 1997). Ab-
dominal aortic coarctation above the renal arteries leads
to severe hypertension proximal to the site of stenosis.
Western blot analysis with anti-nitrotyrosine antibody
revealed marked increase in nitrotyrosine abundance in
the heart and the aorta segment proximal to the stenotic
site in aortic-banded rats (Barton et al., 2001). The en-
hanced protein tyrosine nitration after the exposure to
ONOO� also was found in aortas from hypertensive rats
compared with normotensive Wistar-Kyoto rats (Ca-
bassi et al., 2001).

Angiotensin II is a natural regulator of blood pressure
and a well recognized participant in many cardiovascu-
lar diseases (Stroth and Unger, 1999). It was shown that
increased gene expression of several subunits of NADH/
NADPH oxidase and subsequent generation of oxygen-
derived free radicals (particularly O2

.) are involved in the
vascular response to angiotensin II (Pagano et al., 1998),
and this may be an important component of angiotensin
II-mediated cardiovascular disease (Rajagopalan et al.,
1996; Laursen et al., 1997). Although the role of angio-
tensin II in cardiovascular disease is established, the
molecular mechanisms by which it participates have not
been elucidated. Recent studies have shown that oxidant
stress response to angiotensin II includes extensive ty-
rosine nitration of proteins in the vascular endothelium
(Wattanapitayakul et al., 2000; Wang et al., 2001). This
protein nitration correlates with the extent of endothe-
lial dysfunction observed and is probably associated
with increased production of ONOO� at the early stage

of angiotensin II action. Angiotensin II is a peptide, and
it could be a target for tyrosine nitration caused by
ONOO�. Studies on in vitro tyrosine nitration of angio-
tensin II demonstrated that nitration of the tyrosine
residue totally inhibits vasoconstrictive properties of an-
giotensin II in vivo (Ducrocq et al., 1998).

Studies on rat model of lead-induced hypertension
point to enhanced ROS-mediated inactivation of �NO
with sequential increase of abundance of tyrosine ni-
trated proteins in many tissues, including heart (Vaziri
et al., 1999). Concomitant administration of vitamin E
ameliorated hypertension and tissue levels of nitroty-
rosine. The beneficial effects of vitamin E support the
role of increased RNS/ROS activity in the pathogenesis
of hypertension.

H. Atherosclerosis

The pro- and anti-atherogenic role of �NO is broadly
reviewed (Patel et al., 2000a,b). One explanation for
pro-atherogenic role is the modification of proteins and
lipids caused by RNS/ROS derived from altered �NO
metabolism. A series of studies demonstrated protein
nitration in human atherosclerotic tissue (Beckman et
al., 1994; Buttery et al., 1996; Leeuwenburgh et al.,
1997; Luoma et al., 1998; Cromheeke et al., 1999; Depre
et al., 1999; Hunter et al., 1999). Protein tyrosine nitra-
tion was associated with iNOS expression and detected
in iNOS-positive macrophage-rich lesions at different
stages of atherosclerosis (Luoma et al., 1998; Cromheeke
et al., 1999). Furthermore, iNOS and nitrotyrosine im-
munoreactivity were detected in complex heterogeneous
cellular plaques, in relatively acellular fibrous plaques,
and in myointimal plaques (Hunter et al., 1999). The
presence of iNOS and nitrotyrosine in plaque also cor-
related with plaque instability in patients (Depre et al.,
1999; Hunter et al., 1999). Presumably, tyrosine ni-
trated proteins with altered function may promote
atherogenesis, counteracting the well established anti-
atherogenic effects of �NO.

Specific protein targets for nitration in atherosclerosis
remain to be identified. A recent study (Zou et al., 1999)
on bovine atherosclerotic arteries revealed tyrosine ni-
tration of prostacyclin synthase. This study focused on
the early stages of atherosclerosis, when arteries display
focal thickening without signs of necrosis or rupture of
plaques. It is likely that earlier nitration and inactiva-
tion of prostacyclin synthase and subsequent accumula-
tion of pro-thrombotic prostaglandin H2 may predispose
further platelet aggregation and thrombus formation.

I. Diabetes

Diabetes causes early development of cardiovascular
complications (Grundy et al., 1999). There is emerging
evidence that RNS/ROS make a significant contribution
to the progression of diabetes and its complications
(Honing et al., 1998; Rosen et al., 2001). Several recent
publications focused on diabetes-associated protein ni-
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tration (Frustaci et al., 2000; Ceriello et al., 2001,
2002a,b; Kajstura et al., 2001; Marfella et al., 2001;
Turko et al., 2001). It was shown that the apoptosis of
myocytes, endothelial cells, and fibroblasts in heart bi-
opsies taken from diabetic patients is associated with
intracellular levels of nitrotyrosine (Frustaci et al.,
2000). A positive correlation between accumulation of
nitrotyrosine and myocyte apoptosis in the diabetic
heart was also demonstrated (Kajstura et al., 2001).

Furthermore, perfusion of isolated rat hearts in con-
ditions of high glucose concentration was accompanied
by the formation of nitrotyrosine and evident cardiac cell
apoptosis (Ceriello et al., 2002a). These support the con-
cept of oxidative stress as a mediator of the vascular
damage caused by hyperglycemia. These also consider
protein tyrosine nitration as a marker of oxidative dam-
age in diabetes. Marfella et al. (2001) showed that acute
hyperglycemia in normal subjects causes an oxidative
stress as evidenced by the raised circulating protein
nitrotyrosine levels during the hyperglycemic clamp. Ce-
riello et al. (2001) demonstrated that nitrotyrosine
plasma levels were correlated with plasma glucose con-
centrations in type II diabetic patients. They also dem-
onstrated that postprandial hyperglycemia is accompa-
nied by nitrotyrosine generation (Ceriello et al., 2002b).
These observations may have important implications for
the pathogenesis of vascular dysfunction in diabetes, if
the pathway(s) for the increase of protein-bound nitro-
tyrosine levels will be established.

Recently, we found that the mitochondrial protein
succinyl-CoA:3-oxoacid CoA transferase undergoes ty-
rosine nitration in the rat heart following streptozotocin
administration (Turko et al., 2001). To our knowledge,
this is the first study to identify the increase of tyrosine
nitration of a specific protein in diabetes. Succinyl-CoA:
3-oxoacid CoA transferase is located in the mitochon-
drial matrix and catalyzes the formation of acetoacetyl-
CoA from acetoacetate (Laffel, 1999). This is the rate-
determining step of ketone body conversion into acetyl-
CoA, which subsequently enters the citric acid cycle.
Diabetes is associated with a variety of abnormalities in
myocardial energy metabolism (Sato et al., 1995). Accu-
mulating evidence has implicated changes in myocardial
energy substrate use as a contributing factor to diabe-
tes-associated cardiomyopathies (Stanley et al., 1997).
Our finding that succinyl-CoA:3-oxoacid CoA trans-
ferase undergoes tyrosine nitration and exhibits lower
catalytic activity in the diabetic heart (Turko et al.,
2001) is consistent with the postulated shift in the
source of acetyl-CoA for the citric acid cycle in diabetic
hearts (Stanley et al., 1997).

Endothelial dysfunction is a critical initial factor in
the development of diabetic vascular disease (Laight et
al., 2000). Exposure of human aortic endothelial cells to
high glucose (30 or 44 mM) results in tyrosine nitration
and inactivation of prostacyclin synthase (Zou et al.,
2002). This can change thromboxane/prostaglandin H2

receptor stimulation and explain an increased endothe-
lial apoptosis in diabetes.

J. Cigarette Smoking

Cigarette smoking, as well as secondhand smoke, is
considered a risk factor for cardiovascular disease, but
the mechanism of the adverse effect of smoking is not
fully understood. Cigarette smoke contains abundant
free radicals including �NO. A shared feature among
cardiovascular disease risk factors is the generation of
increased RNS/ROS. Hence, cigarette smoke may induce
some of its damaging effects by free radical mechanisms.
It was shown that exposure to cigarette smoke extracts,
prepared by bubbling the gas phase of smoke into phos-
phate-buffered saline, converts free tyrosine to nitroty-
rosine (Yamaguchi et al., 2000). Exposure of plasma to
gas-phase cigarette smoke causes depletion of antioxi-
dants, induces lipid peroxidation, and is capable of con-
verting tyrosine to nitrotyrosine in proteins (Eiserich et
al., 1995). Human plasma proteins, such as fibrinogen,
transferrin, plasminogen, and ceruloplasmin, were
found to have tyrosine nitrated residues in active smok-
ers (Pignatelli et al., 2001). Studies on the platelets from
chronic smokers demonstrated intra-platelet nitroty-
rosine formation, which was associated with increased
platelet aggregation and with lower intra-platelet levels
of reduced glutathione and ascorbate (Takajo et al.,
2001). Oral administration of ascorbate to smokers re-
stored these parameters compared with the nonsmokers
group. The data suggest that cigarette smoke may cause
damage of biomolecules, including tyrosine nitration of
proteins, and that endogenous antioxidants can attenu-
ate some of these adverse effects.

A recent study implicated tyrosine nitration of mito-
chondrial MnSOD in hearts from mice exposed to ciga-
rette smoke (Knight-Lozano et al., 2002). Exposure to
cigarette smoke also caused increased mitochondrial
DNA damage. These data together support the concept
that intramitochondrial RNS/ROS levels increase with
cardiovascular disease risk factor, cigarette smoking.
Chronic exposure to cigarette smoke could ultimately
result in mitochondrial dysfunction, an important early
event in cardiovascular disease caused by oxidative
stress (Knight-Lozano et al., 2002).

K. Aging

Cardiovascular disease increases in frequency with
age, even in the absence of established risk factors. The
underlying molecular mechanisms associated with age-
related cardiovascular disease have not been elucidated,
but might involve impaired �NO activity (McCann et al.,
1998). For example, the endothelium-dependent relax-
ation declines with increasing age (Tschudi et al., 1996).
Another recent study (Van der Loo et al., 2000) demon-
strated that there is an accumulation of tyrosine ni-
trated proteins in the aortas of old rats compared with
aortas of young rats. One of the nitrated proteins iden-
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tified was Mn-SOD. Nitration of Mn-SOD leads to sig-
nificant reduction of its activity (Yamakura et al., 1998;
MacMillan-Crow et al., 1999). Mn-SOD is the major
antioxidant enzyme in the mitochondria, and even par-
tial inhibition can have adverse consequences. It is also
likely, that the degree of Mn-SOD nitration may be a
molecular marker of vascular aging (Van der Loo et al.,
2000).

One more example of age-related nitration of a specific
protein is reported for sarcoplasmic reticular Ca-ATPase
isolated from the skeletal muscle (Schoneich et al., 1999;
Viner et al., 1999). Inactivation of Ca-ATPase and de-
creased ATP utilization during aging may represent an
adaptive response that functions to down-regulate en-
ergy metabolism and the associated generation of RNS/
ROS (Squier, 2001).

The studies mentioned above indicate that protein
nitration can have both detrimental and protective ef-
fects in aging. However, another study (Leeuwenburgh
et al., 1998) indicated no significant increase in levels of
nitrotyrosine in heart, skeletal muscle, and liver from
young and old female rats.

VI. Therapeutic Implications

Major therapies for cardiovascular disease include
drugs that affect vascular tone, cardiac contractility,
fluid status, or lipid levels (Wattanapitayakul and
Bauer, 2001). However, in light of the critical roles of
RNS/ROS in cardiovascular disease, it seems reasonable
to expect that antioxidant therapy may also have value.
Perspectives of antioxidant therapy for cardiovascular
disease were recently reviewed (Cuzzocrea et al., 2001;
Snoeckx et al., 2001; Wattanapitayakul and Bauer,
2001). They mainly include different interventions to
reduce RNS/ROS generation, such as antioxidant food
supplements, ONOO� decomposition catalysts, SOD-
mimics, and modulations of expression of antioxidant
enzymes, including molecular chaperones.

The susceptibility to oxidative stress is a function of
the overall balance between factors that exert oxidative
stress and those that exhibit antioxidant capability. Ox-
idative damage can, therefore, be described as a conse-
quence of excessive oxidative stress and/or insufficient
antioxidant potential. Under normal physiological con-
ditions, �NO, O2

., ONOO�, and other RNS/ROS are part

of the delicately balanced redox regulation. Once it was
altered by cardiovascular disease, the development of
procedures for reestablishing the original balance may
be a central issue of research on cardiovascular disease.
However, flooding the system with antioxidants or the
overexpression of antioxidative enzymes may be just as
harmful as excessive exposure to RNS/ROS (Droge,
2002). The major problem is the identification of the
narrow line that separates advantageous and detrimen-
tal effects of RNS/ROS. Protein nitration is a type of
oxidative damage that occurs in cardiovascular disease.
Many studies summarized in this review found a posi-
tive correlation between protein nitration and cardiovas-
cular disease progression and concluded that protein
nitration can be a biological marker of disease progres-
sion. At the same time, protein nitration can also be a
biological marker of effectiveness of antioxidant ther-
apy.

Such an example is brought up by studies on statin
therapy. Statins, cholesterol-lowering agents, can also
improve the stability of the mRNA for eNOS and en-
hance the generation of �NO (Lefer et al., 2001). It was
demonstrated in an experimental model of myocardial
infarction, that cerivastatin treatment improved left
ventricular remodeling, whereas decreased the level of
tyrosine nitrated proteins (Bauersachs et al., 2001). An-
other study showed that simvastatin treatment reduced
the atherosclerotic area in the thoracic aorta of rabbits
fed a 0.5% cholesterol diet and, at the same time, de-
creased nitrotyrosine staining (Thakur et al., 2001). It is
recognized that eNOS-derived �NO is a potent inhibitor
of leukocyte recruitment at sites of inflammation. It
seems likely that eNOS-derived �NO does not cause pro-
tein nitration, and protein nitration could still be a
marker of the efficiency of statin therapy.

Another question is whether altered functions of ty-
rosine nitrated proteins contribute to disease develop-
ment. Basically, the answer to this question requires
identification of a specific tyrosine nitrated protein and
a positive correlation between altered function of this
protein and development of complications. Several stud-
ies (Zou and Bachschmid, 1999; Zou et al., 1999; Van der
Loo et al., 2000; Knight-Lozano et al., 2002; Mihm et al.,
2001a, 2002) fit these requirements and propose that
protein nitration is a link between increased oxidative

FIG 2. Does protein nitration contribute to cardiovascular disease? Increased RNS/ROS production may be a unifying mechanism in cardiovascular
disease progression. RNS/ROS production causes protein nitration, whose specific role in cardiovascular disease warrants further studies. Multiple
effects of RNS/ROS, other than protein nitration, include other protein modifications, modification of molecules other than proteins, and transcrip-
tional regulation.
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stress and cardiovascular complications. Collectively,
this suggests that the search for antioxidants that pre-
vent protein nitration may offer a unique therapeutic
option for the treatment of cardiovascular complications.

VII. Future Directions

The emerging experimental data summarized in this
review show protein nitration as an internal feature of
cardiovascular disease (Fig. 2). The question is whether
protein nitration occurs at an early stage of cardiovas-
cular disease, contributing to the development of com-
plications, or whether it is merely a consequence of the
oxidative tissue damage, reflecting the presence of com-
plications. The question is important and warrants fu-
ture studies on detailed profiling of tyrosine nitrated
proteins in different settings of cardiovascular disease.
Additionally, function and metabolism of tyrosine ni-
trated proteins remain an area of research in need of
rigorous study.
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